IMPE2023 Free Communications GH and IGFs 1 (4 abstracts)
1Hospital de Pediatría Garrahan, Ciudad Autónoma de Buenos Aires, Argentina. 2CONICET, Ciudad Autónoma de Buenos Aires, Argentina
Growth is influenced by genetic, nutritional, environmental, and hormonal factors, but it proceeds in a remarkably predictable pattern characterized by a constant growth deceleration between childhood and adolescence, when the pubertal growth spurt occurs. This growth deceleration is coordinated in multiple tissues and organs in order to maintain body proportions. Growth hormone (GH)/ insulin-like growth factor type 1 (IGF1) axis and insulin are crucial stimulators of growth, cell proliferation and metabolism. However, their levels do not change with age in a pattern that would explain the prepubertal decline in growth rate. DNA methylation represents a fundamental epigenetic mark that is associated with transcriptional repression during development. We hypothesize that the postnatal growth pattern could be orchestrated by epigenetic mechanisms. In order to analyze age related physiological changes, we evaluated promoter methylation in the GHR, IGF1R and INSR genes in peripheral blood from 40 healthy children of both sexes (females (F) n=21 and males (M) n=19), between 3 and 15 years old by using targeted deep-amplicon bisulfite sequencing on a MiSeq system. Sequencing libraries of 4 promoter CpG rich regions for GHR, 3 for IGF1R and 5 for INSR (104, 103 and 141 CpG sites, respectively) were generated and analyzed for mean methylation values of all CpG sites using amplikyzer2 software. The results would suggest a sexual dimorphism in the epigenetic regulation of GH, IGF1 and insulin receptors gene expression. A significant negative correlation between GHR methylation and age was observed in both sexes (Multiple Spearman correlation, P<0.05), but in different GHR promoter regions. Specifically, a decrease in the methylation levels with age were detected in CpG-8, CpG+183 and CpG+243 in F; and in CpG+343, CpG+346, CpG+385, CpG+391, CpG+407 and CpG+487 in M. In contrast, in the IGF1R promoter region, a positive correlation was observed exclusively in F, between mean methylation levels and age in CpG-51, CpG-43, CpG-41, CpG-23, CpG-17, CpG-15, CpG-13, CpG-11, and CpG-9, P<0.05. Male-specific positive correlation between INSR promoter methylation values and age were found in CpG-768, CpG+10, CpG+31, CpG+87, CpG+95, CpG+163, CpG+199, CpG+206, CpG+238, CpG+700, CpG+815 and CpG+900, P<0.05. Taking together, our findings are in agreement with the hypothesis that age-associated DNA promoter methylation changes could be involved in the physiological growth pattern. Finally, the observed sexual dimorphism suggests age- and sex-dependent regulatory mechanisms for normal growth.